SOME PROBLEMS OF THE DYNAMICS OF VAPOR
BUBBLES UNDER CONDITIONS OF A WEAK
BODY-FORCE FIELD
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We determine the reaction force of a liquid acting on a vapor or gas bubble which expands
and rises from a horizontal wall. Relations are presented for the radii of bubbles at
breakaway for small Jacob numbers. We explain the weak dependence of heat-transfer
coefficients on gravitational acceleration in developed bubble boiling.

The kinetics of formation and the dynamics of growth and separation of vapor bubbles are amongst
the most important problems in the physics of boiling, Recently the development of studies of heat transfer
under conditions of weak body-force fields has offorded a new opportunity for the evaluation of various rela-
tionships relating to boiling. Papers on the dynamics of vapor bubbles under these conditions are few in
number [1-4] and were carried out in the overload range, 0.01 <7 < 1.

The studies [1, 2] were carried out on water using flat nickel heaters under conditions of short-term
"weightlessness, " achieved at incidence of the container with the mounting.

The results given in [3, 4] were obtained under conditions of long-term simulation of weak body-force
fields [5, 6] during the boiling of ethyl ether on a belt heater [4] and of oxygen at a single nucleus of boil-
ing. Studies of the boiling of water {2] and of ethyl ether [4] were carried out on polished surfaces contain-
ing a limited number of vapor-forming nuclei. Thus the majority of the results obtained apply to indivi-
dual bubbles; quite obviously, the concepts devised for describing an ensemble of interacting bubbles do
not apply to them (see, for example, [7, 8]).

The main results obtained in [1-4] reduce to the following:

1. The dependence of the bubble radius on the time in the asymptotic stage of bubble growth may be
expressed by the relation

R = pr, (1)
where n ~ 0.4-0.5;
r —
B=C,Java =C, AT (for n =0.5); 2)
pllLal/z
9
T C, is a coefficient on the order of unity. The values of 8 and n
are very close to the theoretical values [9] and are independent
0 ' of g.
- 2. During breakaway the bubble radii increase as g de-
creases in accordance with the law
i Ry = Aigh, (3)
. where k; ~ —(0.3-0.4).
Fig. 1., Scheme for calculation of 3. The breakaway frequency of the bubbles is described

bubble motion near the wall. by the relationship
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. [ = A8, ‘ (4)
where k, ~ 0.7-1.

4. The ascent speed of the "largest® bubbles (1073 m < Rq <3 1072 m, for n = 1) is expressed by
the relationship [2]

4
”=As‘//0g(pp?p)- (5)

The ascent speed of the "small" bubbles (2 *107* m < R < 10~3 m for 1 =1) [3, 4] is in accord with the
relationship [10]

u=A,VRe, (6)
which, withk, =—1/3inEq. (3), corresponds to u ~ g! /3,

5. For the Jacob numbers used in {1-4] (Ja ~ 10-30) bubble breakaway started from a "neck, "
the bubble speed at the time of its deparfure from the "neck" being close to its speed far from the surface,

One of the most interesting of our results is the dependence of Ryon g. From a perusal of [2,
3] it follows that the known relationship due to Fritz [11]
, e
R, ~ 0.01 —e . 7
4 "V Zo—o ™

is not satisfied even for very small Jacob numbers (Ja = 10-20). For cryogenic liquids with wetting
angles with metals v ~ 0°, the relationship (7) is simply not applicable. Obviously, for a true estimate
of Ry it is necessary to account for the dynamics of bubble growth and not be restricted to a study of
static stability of the bubble.

We estimate the dynamic forces (reaction forces of the liquid) acting from the side of t{he liquid on
8 vapor bubble as it grows in size and ascernds from the wall. Assuming a spherical bubble, taking the
flow of the liquid to be a potential flow, and neglecting the momentum of the vapor, we find that the veloc-
ity potential ¢ satisfies Laplace's equation

Ag =0 (8)
with corresponding boundary conditions [12]. The potential for a bubble far from the wall for axially sym-
metric flow of the liquid (13] is given by

R® . R? .
=— scosf -—R.
¥ 2r2 + r (9)
The meaning of the quantities r, R, s, and 6 is shown in Fig.1. Using the method of images [12] we
can obtain an expression for ¢ taking into account the influence of the wall, in the form of a power series

[13}; after simple transformations, this expression reduces to the form

- R® R? R? 5[ R® R? 2R%s
R e e e R P ao
Substituting Eq. (10) into Bernoulli's equation [12]
p_% 1 2&)2 (_1-.?9;‘2 _ o) .. P= ‘ 11)
p o 2[(6r + r 66) g(s+rcos){—p (

and integrating Eq. (11) for the pressure over the surface of the bubble, we obtain the total force F act-
ing on the vapor bubble:

F=Fr—F, a2)
Here Fg is the buoyancy force:
F,= % nR3%g, (13)
FR is the reaction force;
FR — ]-|—2M3 S _ Out ‘2
A pore 20w (1—wy
3
3 1 —2%3— 248 .5 9 n2 ; 3 o« .
— R — R .. — RR, 14
+ 2 (1 —n3)? § 2 (11— + 2 1-—n? R 14)

where n =R /2s.
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TABLE 1. Data on Vapor Bubble Dynamics from [1-4]

Lt dara | 2120 Ry10%,m « | Relfhm
) | m/sect/? (experiment) Rg (theory)
[ 1,35 3 2 2,1
2] 0,8 1,33 4 1,%
3] 0,235 0,24 6 0,27
14) 0,42 0,6 4 0,57

For the case of a bubble tangent to the wall (R =s), we have for the velocity potential, instead of
Eq. (10),

55 R 3 - RR? (15)
(p—R( = 7—}——7—r)c056+—7——.
The expression for the reaction force in this case reduces to
4 8 - 15
Fr = aRp (2 kR -R2).

R 3 p 7 =+ 2 (16)
Equations (14) and (16) have the same structure as the approximate expressions obtained in [13] and agree
with them as to order of magnitude.

From Egs. (1) and (16) we can obtain the following expression for the reaction force:
Fr = % 0B (231 — 8) 1, an

From Eg. (17) it is evident that when n = 8/23 the dynamic force is equal to zero; for n < 8 /23, it is nega-
tive (directed upwards from the wall); for n > 8 /23, it is positive (directed towards the wall); for n =1 /2,
the force is constant; for n < 1/2, it decreases with time; for n > 1 /2, it increases with time. The ele-
mentary analysis given here shows the inaccuracy of general statements regarding the single-valued
action of the dynamic forces (inertia forces) on a vapor bubble,

Equation (17) agrees to within around 10% with the expression for Fr obtained in [14] forn =1/2 by
another method. From Egs. (1), (12), and (16) we can obtain a criterion for estimating the size of the
dynamic forces in relation to the buoyancy force

2z -2 ‘
Keg= £ B7R Tn@3n—8) as)
Fy Tg
We can take the condition KRy =1 as an estimate of the minimum bubble departure radius (for n> 8

/23), since in this case forces of surface tension are not considered. Thus
Rua = [ 2828 )5
7g .
From Eq. (19), using Eq. (2) we obtain as a special case, whenn =1/2, expressions analogous to those

of Ruckenstein [15], and Roll and Myers [16], with a value for the exponent of g equal to —1 /3, Ingeneral,
this exponent assumes various values, for example, from —1/4 to-2/3, when n varies from 0.4 to 0.9.

(19

Estimates KRg for vapor bubbles at the instant of departure (see Table 1) show that the dynamic
forces (reaction forces) acting on a bubble from the side of the liquid are small. In view of the small~
ness of the dynamic forces at the instant of bubble breakaway, an attempt to estimate the breakaway
radius from a formal consideration of the equilibrium of forces is not feasible. The expression (19),
obtained by equating the dynamic and buoyancy forces, yields lowered results. For example, in [3],
when 7 =1, Ry min ~ 0.9°107* m; the experimental results yield Rg ~ (1.5-3) *10~% m.

We consider now the equilibrium of forces, faking surface tension into account [11]:
F,=F,+ Fg, (20)
where F, = 2nRc@().

From Eg. (20) we obtain for n =1 /2 the relation



TABLE 2. Dependence of Quantities Characterizing Vapor Bubble
Breakaway on Gravitational Acceleration
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Fig. 2. Relative radii of vapor bubbles as a function
of gravitational acceleration: a) data of [1]; b) data of
[2]; ¢) data of [3]; 1)k, =—1/4;2)—8/10;3)—1/3;4) -3
/8;5)—1/2. The lower crosshatched region refers to
[3]; the upper to [1, 2].

B,
~R* (1 21
R R<+4gR*2R), (21)

where R* is the breakaway radius according to Fritz (7).

Equation (21) is the analog of Stanishevskii's formula, referred to by the authors of {2] in inter-
preting their data., However, in accordance with the data of [2], the coefficient of R in Eq. (21), being in-
dependent of g since R* ~ g‘l/Z, has a value of the order of 1 sec/m when R ~ 1072 m/sec for 5 = 1.
Thus the procedure of estimating the influence of bubble-growth dynamics on the breakaway of the bubble
from the wall by using equations of the type of Eq. (20) cannot be considered to be correct.

Let us attempt to estimate the bubble breakaway radius from the conditions of equilibrium of forces
acting on the bubble, not when the bubble is isolated from the surface, but at the break in the "neck" of
the bubble where surface tension cannot be taken into account. At this instant the shape of the bubble is
closest to spherical [3], testifying thereby to the absence of forces deforming the bubble and permitting
us to apply, more or less correctly, the theory outlined below which is applicable to a spherical bubble,

Neglecting, for simplicity, the influence of the wall, i.e., putting w =0 in Eq. (14), we obtain
Fi =2 aRop (3Rs + K9, ' (22)
Puiting Fg = FR, and noting from Egs. (22), (1), and (13) that s=u-= const, and § =0, we have
3n\*, _ -
Ry = (—2~) Bg 5", (23)
where & =u in accord with Eq. (5) or Eq. -(6). '
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In Table 2 we present information giving the dependence of the breakaway radius Ry on g; we also
give the dependence on g of the breakaway frequency f, as well as the quantities fRy, fR(zi, and fRfi, cal-
culated on the basis of Eq. (23).

From Table 2 it follows, in particular, that the exponent k; in Eq. (3) depends on the size of the bub-
bles and on the quantity nin Eq. (1). For the cases of boiling studied in [1-4], with Jacob number Ja =~ 10
to 30, this exponent may vary from —-1/4 to —3/8, which is very close to the experimental values. The
good agreement of the experimental and theoretical results in evident in Fig. 2.

To obtain expressions for the absolute magnitudes of the bubble departure radii we put s =u from
Egs. (5) and (6) into Eq. (23), revising thereby the coefficients A; and A, from the experimenta] data (2,
4]. For small bubbles (2107 m < Ry < 107™% m for 7 = 1)

R, = 1.85p4 g—1/3 (24)

and for "large" bubbles (10™° m < Rg < 3-107% m for 1 = 1)

1/8 -
R, = 1.2 ( —"-) g, : (25)
o
In evaluating Eqgs, (24) and (25), for definiteness, we took n =1/2. The values of Rd, calculated in accord
with Egs. (24) and (25), agree with the experimental values from [2-4] to within several percent (see Table

1).

Equation (25) also helps to explain the very weak dependence of the heat-transfer coefficient o on g,
which was observed experimentally for # =0.01-1 for developed bubble boiling [1, 3, 5, 6, 17]. Assuming
that all the heat from the heating surface goes into vapor formation, we obtain

g _g. aRSFLY'N. (26)

Using Egs. (2) and (24), we write Eq. (26) in the form
0.3 .
=B, U_spNTy;?s_gﬁ 07 | @7
where B, = 2.
If we use Zhokhov's development for N [18], we obtain from Eq. (26)

3/19 10/19 (,2/19 ] 2/19
o= B, D PT T e, 28)
@597 59191719

where B, is a dimensionless coefficient; the quantity [ =1 m has been introduced to maintain the proper
dimensionality {18].

Equations (27) and (28) furnish a plausible dependence of o on q and g, and, in addition, Equation (28)
furnishes a qualitatively correct dependence of ¢ on the pressure. It is interesting to note that in the
majority of the experimental papers on boiling in the presence of decreased gravitation {17], a very weak
increase in o was obtained with a decrease in g, a result which also follows from Eqgs. (27) and (28).

NOTATION
1M =g/8 is the overload coefficient;
g is the gravitational acceleration;
gy is the Earth's gravitational acceleration;
R is the radius of the bubble;
Ry is the breakaway radius of the bubble;
R4 . is the bubble breakaway radius at =1;
Rdppin is the minimum breakaway radius;
Ja = cpAT /Lp" is the Jacob number;
T is the time;
v is the wetting angle, deg;
c is the specific heat at constant pressure;
P is the density of the liquid;
or is the density of the vapor;



is the latent heat of vaporization;

is the temperature difference between the heater and the bulk of the liquid;
is the thermal conductivity;

is the thermal diffusivity;

is the surface tension;

is the lift velocity of the bubble from the surface;

are the coordinates of a point in the coordinate system having its origin at the center
of the bubble;

is the velocity potential;

is the distance from the center of the bubble to the wall;

is the pressure; .

is the saturation temperature;

is the number of centers of vapor generation per unit area;

is the heat-exchange coefficient;

is the heat flux density.
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