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We determine the react ion force of a liquid acting on a vapor or  gas bubble which expands 
and r i ses  f rom a hor izontalwal l .  Relations are  presented for the radii of bubbles at 
breakaway for small  Jacob numbers .  We explain the weak dependence of hea t - t r ans fe r  
coefficients on gravitat ional  accelera t ion in developed bubble boilil]g. 

The kinetics of formation and the dynamics of growth and separat ion of vapor bubbles are  amongst  
the most  important  problems in the physics  of boiling. Recently the development of studies of heat t r ans fe r  
under conditions of weak body-force  fields has offorded a new opportunity for the evaluation of various re la -  
tionships relating to boiling. Papers  on the dynamics of vapor bubbles under these conditions are  few in 
number [1-4] and were ca r r i ed  out in the overload range, 0.01 < ~7 < 1. 

The studies [1, 2] were ca r r i ed  out on water using flat nickel heaters  under conditions of s h o r t - t e r m  
, ,weight lessness ,"  achieved at incidence of the container with the mounting. 

The resul ts  given in [3, 4] were obtained under conditions of long- te rm simulation of weak body-force  
fields [5, 6] during the boiling of ethyl ether  on a belt heater  [4] and of oxygen at a single nucleus of boil-  
ing. Studies of the boiling of water [2] and of ethyl ether [4] were car r ied  out on polished surfaces  contain- 
ing a l imited number  of vapor - fo rming  nuclei. Thus the major i ty  of the resul ts  obtained apply to indivi- 
dual bubbles; quite obviously, the concepts devised for  describing an ensemble of interact ing bubbles do 
not apply to them (see, for example, [7, 81). 

The main resul ts  obtained in I1-4] reduce to the following: 

1. The dependence of the bubble radius on the time in the asymptotic  stage of bubble growth may be 
expressed  by the relation 

R = ~ n ,  (1) 

r 

Fig. 1. Scheme for  calculation of 
bubble motion near  the wall. 

where n ~ 0.4-0.5; 

= C O Ja ] / a  = C O ~A____~T (.for n ---- 0.5); (2) 
p"Lal/2 

C O is a coefficient on the order  of unity. The values of fl and n 
are  very  close to the theoret ical  values [9] and are  independent 
of g. 

2. During breakaway the bubble radii  i nc rease  as g de- 
c reases  in accordance  with the law 

Ra = A l g  k', (3) 

where k 1 ~ - (0.3-0.4). 

3. The breakaway frequency of the bubbles is descr ibed 
by the relationship 
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f = A~g k2, (4) 
where  k 2 ~ 0.7-1.  

4. The ascent  speed of the " l a r g e s t  w bubbles (10 -3 m < R d < 3 - 10 -3 m, for  ~ = 1) is e x p r e s s e d  by 
the re la t ionship  [2] 

4 / "N---- tl~ 

u = A. v 
The ascent  speed of the " s m a l l "  bubbles (2 "10 -4 m < R d < 10 -3 m for  ~? = 1) [3, 4] is in accord  with the 
re la t ionship  [10] 

u = A, V ~ g ,  (6) 

which, with k 1 = - l / 3 i n E q .  (3), c o r r e s p o n d s t o u ~ g  1/3. 

5. For  the Jacob numbers  used in [1-4] (Ja ~ 10-30) bubble breakaway s ta r t ed  f rom a "neck , "  
the bubble speed at  the t ime of i ts  depar tu re  f r o m  the "neck" being c lose  to i ts  speed fa r  f r o m  the su r face .  

One of the mos t  in teres t ing of our resu l t s  is the dependence of R d on g. F r o m  a pe rusa l  of [2, 
3] it follows that the known re la t ionship  due to Fr i tz  [11] 

Re .~ 0.01V g(p _p,,) (7) 

is not sa t is f ied even for v e r y  smal l  Jacob numbers  (Ja ~ 10-20). For  cryogenic  liquids with wetting 
angles with me ta l s  y ~ 0 ~ the re la t ionshi  p (7) is s imply  not appl icable.  Obviously, for  a t rue  e s t ima te  
of R d it is n e c e s s a r y  to account for  the dynamics  of bubble growth and not be r e s t r i c t ed  to a study of 
s tat ic  stability" of the bubble. 

We es t ima te  the dynamic fo rces  ( react ion fo rces  of the liquid) acting f rom the side of the liquid on 
a vapor  bubble as  it grows in s ize  and ascends  f r o m  the wall.  Assuming  a spher ica l  bubble,, taking the 
flow of the liquid to be a potential  flow, and neglecting the momentum of the vapor ,  we find that the ve loc -  
ity potential  ~ sa t i s f ies  Laplace '  s equation 

A~ = 0 (8) 

with cor responding  boundary conditions [12]. The potential  for  a bubble fa r  f rom the wall for  axial ly s y m -  
me t r i c  flow of the liquid [13] is given by 

R~ 
~p= 2r- ~R3 "scosO + r J~" (9) 

The meaning of the quantities r, R, s, and 0 is shown in Fig. 1. Using the method of images  [12] we 
can obtain art express ion  for  ~0 taking into account the influence of the wall, in the fo rm of a power  s e r i e s  
[13]; a f t e r  s imple  t r ans fo rmat ions ,  this exp res s ion  reduces  to the f o r m  

2 R2s cos 01. (10) ~=~[ R~ 4 ( ~ L  2r~ + r ) ~ s ~ ]  c~ + /~ [ - ~  + ( 2 ~  + r) Ss~--R 3 ] 

Substituting Eq. (10) into Bernou l l t ' s  equation [12] 

p Oq~ 1 [ [ & p ~ 2 + ( 1  0~'/21 P. 
p Or 2 [~ Or ] \ r "00-] j - - g ( s + r c o s O ) - ~ - ~ p  (11) 

and integrat ing Eq.  (11) for  the p r e s s u r e  over  the sur face  of the bubble, we obtain the total  force  F ac t -  
ing on the vapor  bubble: 

F : F~ - -  Fg. (12) 

H e r e  Fg is the buoyancy force:  

4 Fg = - ~  ~Rapg, (13) 

F R is the reac t ion  force:  
F n 1 "~- 2~ 3 "S'~ 9• s ~ 

4 zrpR ~ 2 (1 - -  • (1 - -  • 
3 

+ 3 .  1 - -  2 •  a - -  2•  e s'/~ -[- 9 .  • ,R, + 3 • RR,  ( 1 4 )  
2 (1 - -  • 2 (1 - -  ~3)~ 2 1 - - •  

where n -- R / 2 s .  



TABLE 1. Data on Vapor Bubble Dynamics f rom [1-4] 

Lit. data 

[1] 
[21 
[31 

!~.I0 ~, 
' m/see1/2 

1,35 
0,8 
0.235 
0,42 

R d" 10 3 , m 
(experiment) KRg" 10 z 

R d. 10 3 , m 

(theory) 

3 
1,33 
0,24 
0,6 

2 

4 

6 

4 

2,!  

1,26 

0,27 

0,57 

For the case of a bubble tangent to the wall (R = s), we have for the velocity potential, instead of 
Eq. (10), 

~ = R  �9 7 + - y r  c o s O §  . (15) 

The express ion for the react ion force in this case reduces to 

Fn = 4 ~R2p ( 8 RR + I~- R2 ) �9 (16) 

Equations (14) and (16) have the same s t ructure  as the approximate expressions obtMned in [13] and agree 
with them as to order  of magnitude. 

F rom Eqs .  (1) and (16) we can obtain the following express ion for  the react ion force:  

4z~ 8) ~4~-2 F~ = - ~  9~4n(28n -- . (17) 

F rom Eq. (17) it is evident that when n = 8 /23  the dynamic force is equal to zero;  for n < 8/23,  it is nega-  
tive (directed upwards f rom the wall); for n > 8/23,  it is positive (directed towards the wall); for n =1/2, 
the force is constant; for n < 1/2 ,  it dec reases  with t ime; for n > 1/2 ,  it increases  with t ime. The ele-  
mentary  analysis given here  shows the inaccuracy of general  s tatements regarding the single-valued 
action of the dynamic forces  (inertia forces)  on a vapor bubble. 

Equation (17) agrees  to within around 10% with the express ion for F R obtained in [14] for n = 1 /2  by 
another method. F rom Eqs.  (1), (12), and (16) we can obtain a c r i te r ion  for est imating the size of the 
dynamic forces  in relation to the buoyancy force 

2 1~ 2 
KRg= FR ~:nR 7n(23n- -8) . .  (18) 

Fg 7g 

We can take the condition KRg -- 1 as an est imate  of the minimum bubble depar ture  radius (for n > 8 
/23),  since in this ease forces  of surface tension are  not considered.  Thus 

7g ' (1 9) 

F rom Eq. (19), using Eq. (2) we obtain as a special  case, when n = 1/2,  expressions analogous to those 
of Ruckenstein [15], and Roll and Myers  [16], with a value for the exponent of g equal to - 1 / 3 .  Ingeneral ,  
this exponent assumes  various values, for example, f r o m - l / 4  to - 2 / 3 ,  when n var ies  f rom 0.4 to 0.9. 

Es t imates  KRg for vapor bubbles at the instant of depar ture  (see Table 1) show that the dynamic 
forces  (reaction forces)  acting on a bubble f rom the side of the liquid are  small .  In view of the smal l -  
ness of the dynamic forces  at the instant of bubble breakaway, an attempt to est imate the breakaway 
radius f rom a formal  considerat ion of the equilibrium of forces  is not feasible.  The express ion (19), 
obtained by equating the dynamic and buoyancy forces,  yields lowered resul ts .  For  example, in [3], 
when V = 1, R d min ~ 0.9 "10 -4 m; the experimental  resul ts  yield R d ~ (1.5-3) "10 -4 m. 

We consider now the equilibrium of forces,  taking surface tension into account [11]: 

Fg = Fo + Fn, (20) 

where Fa = 27rRr ). 

F rom Eq. (20) we obtain for n = 1 /2  the relation 



TABLE 2. Dependence of Quantities Character iz ing Vapor Bubble 
Breakaway on Gravitational Accelera t ion  

Bubble ascent speed 

; -  Vg~ 

~ gl/4 
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Fig. 2. Relative radii of vapor  bubbles as a function 
of gravitat ional  accelerat ion:  a) data of [1]; b) data of 
[2]; c) data of [3]; 1)k 1 = - 1 / 4 ;  2 ) - 3 / 1 0 ; 3 ) - 1 / 3 ; 4 ) - 3  
/ 8 ; 5 ) - 1 / 2 .  The lower crosshatched region re fe rs  to 
[3]; the upper to [1, 2]. 

( ~= R), (21) R~-.R* \1 + 
4gR .2 

where R* is the breakaway radius according to Fr i tz  (7). 

Equation (21) is the analog of Stanishevskii 's  formula,  r e fe r red  to by the authors of [2] in in ter -  
preting their data. However, in accordance with the data of [2], the coefficient of 1~ in Eq. (21), being in- 
dependent of g since R* ~ g-1/2, has a value of the order  of 1 s e c / m  when 1~ ~-. 10 -2 m / s e c  for ~? = 1. 
Thus the procedure  of estimating the influence of bubble-growth dynamics on the breakaway of the bubble 
f rom the wall by using equations of the type of Eq. (20) cannot be considered to be co r rec t .  

Let us attempt to est imate the bubble breakaway radius f rom the conditions of equil ibrium of forces  
acting on the bubble, not when the bubble is isolated f rom the surface, but at the break in the ~neck ~ of 
the bubble where surface tension cannot be taken into account. At this instant the shape of the bubble is 
c loses t  to spherical  [3], testifying thereby to the absence of forces  deforming the bubble and permit t ing 
us to apply, more  or  less correct ly ,  the theory outlined below which is applicable to a spherical  bubble. 

Neglecting, for simplicity,  the influence of the wall, i.e., putting x = 0 in Eq: (14), we obtain 

FR = _2 aR2p (3)~s + R's). (22) 
3 

]Putting Fg = FR, and noting from Eqs. (22), (I), and (13) that s = u = eonst, and ~ = 0, we have 

where ~ = u  in aceord with E q .  (5) or  Eq.. ' (6) .  



In Table 2 we present  information giving the dependence of the breakaway radius R d on g; we also 
give the dependence on g of the breakaway frequency f, as well as the quantities fRd, fR~, and fR~, cal-  
culated on the basis of Eq. (23). 

F rom Table 2 it follows, in par t icular ,  that the exponent k 1 in Eq. (3) depends on the size of the bub- 
bles and on the quantity n in Eq. (1). For  the cases  of boiling studied in [1-4], with Jacob number Ja ~ 10 
to 30, this exponent may vary  f rom - ~ / 4  to - 3 / 8 ,  which is ve ry  close to the experimental  values.  The 
good agreement  of the experimental  and theoret ical  resul ts  in evident in Fig. 2. 

To obtain express ions  for  the absolute magnitudes of the bubble departure  radii we put s = u f rom 
Eqs.  (5) and (6) into Eq. (23), revising thereby the coefficients A 3 and A 4 f rom the experimental  data  [2, 
4]. For  small  bubbles (2" 10 -4 m < R d < 10 -3 m for ~? = 1) 

Rd = 1.85~ 4/3 g--l/3 (24) 

and for ,,large n bubbles (10 -3 m < R d < 3 �9 10 -3 m for  ~ = 1) 

= 1.2  / g-3j8 ( 51 
, P /  

In evaluating Eqs.  (24) and (25), for definiteness, we took n = 1 /2 .  The values of Rd, calculated in accord 
with Eqs ,  (24) and (25), ag ree  with the experimental  values f rom [2-4] to within severa l  percent  (see Table 
1). 

Equation (25) also helps to explain the very  weak dependence of the hea t - t r ans fe r  coefficient a on g, 
which was observed experimental ly for ~? = 0.01-1 for developed bubble boiling [1, 3, 5, 6, 17]. Assuming 
that all the heat f rom the heating surface goes into vapor formation, we obtain 

4 nR3dfLp,N.  (26) q=-~ 

Using Eqs.  (2) and (24), we write Eq. (26) in the form 

N~ ~ qO.7 (27) 
= B1 L0,3 p,,0.7 a0.5 g0. l 

where B~ ~ 2. 

If we use Zhokhov's development for N [18], we obtain f rom Eq. (26) 

13/19~'I~ P "2/19L2/19 q16/19, (28) 
~Z = B 2 aS/t9T9/19og/19gl/19 

where B 2 is a dimensionless  coefficient; the quantity l = 1 m has been introduced to maintain the proper  
dimensionali ty [18]. 

Equations (27) and (28) furnish a plausible dependence of a on q and g, and, in addition, Equation (28) 
furnishes a qualitatively co r r ec t  dependence of a on the p res su re .  It is interest ing to note that in the 
major i ty  of the experimental  papers  on boiling in the presence  of decreased gravitat ion [17], a ve ry  weak 
increase  in a was obtained with a dec rease  in g, a result  which also follows f rom Eqs. (27) and (28). 

NOTATION 

~? = g/g1 is the overload coefficient; 
g is the gravitat ional  accelerat ion;  
gl is the Ea r th ' s  gravitat ional  accelerat ion;  
R is the radius of the bubble; 
R d is the breakaway radius of the bubble; 
Rdl is the bubble breakaway radius at ~? = 1; 

Rdmin is the minimum breakaway radius;  
Ja = c p A T / L p  ~ is the Jacob number;  
~- is the t ime; 
7 is the wetting angle, deg; 
c is the specific heat at constant p r e s su re ;  
p is the density of the liquid; 
p~ is the density of the vapor;  
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is the latent heat of vaporization; 
is the temperature difference between the heater and the bulk of the liquid; 
is the thermal conductivity; 
is the thermal diffusivitY; 
is the surface tension; 
is the lift velocity of the bubble f~om the surface; 
are the coordinates of a point in the coordinate system having its origin at the center 
of the bubble; 
is the velocity potential; 
is the distance from the center of the bubble to the wall; 
is the pressure;  
is the saturation temperature; 
is the number of centers of vapor generation per unit area; 
is the heat-exchange coefficient; 
is the heat flux density. 
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